

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

2019-10-16

Added

	Added test cases for YML files that have missing access level blocks - for example, if someone wants to generate a policy that doesn’t include “Tagging” or “Permissions Management”

Changed

	Test cases to allow missing access level blocks

2019-10-15

Added

	Unit tests for the policy template generation

	download-policies command added

	Downloads policies to ~/.policy_sentry/account-id/aws-managed or ~/.policy_sentry/account-id/customer-managed.

2019-10-14

Changed

	short_help for Click commands to improve help messages

	create-template command added to make policy file writing easier.

2019-10-12

Added

	Updated to 0.4.1

	New services added for coverage:

	iq

	iq-permission

	deepracer

	dbqms

	forecast

	lakeformation

	rds-data

Changed

	utils/get_links.py script had an issue with paths

2019-10-06

Added

	Added analyze functionality to analyze a policy according to access levels, not just a list of actions.

Changed

	Updated the HTML documentation to get the latest updates.

	Fixed old references to scripts directory; now it is the utils directory

	Fixed the path of the policy_sentry/shared/data/docs directory in the download-docs.sh script, since its previous reference was the root directory, which was accurate before we moved to pypi compatibility.

2019-10-02

Changed

	Sanitizing directory before moving to GitHub

	Remove _docs directory since we are using the wiki

2019-09-19

Added

	write-policy-dir command

	input-dir and output-dir directories under examples, to show write-policy-dir command usage

2019-09-14

Changed

	Project structure now follows pypi format

	Changed download-docs stuff to utils folder.

	create_all_tables command is now initialize

	Changed Matty’s folder structure a bit so the setup.py file is now in the root directory, which makes more sense.

	Fixed underscore vs. hyphen typo in the docs.

	html files still live in the main policy_sentry pypi package. The user can quickly generate the SQLite database using the initialize function (formerly create_all_tables)

	Lots of other cleanup.

Added

	pypi modifications, such as the MANIFEST.in file

	Database file now resides in $HOME/.policy_sentry/aws.sqlite3

	Default audit file now resides in $HOME/.policy_sentry/audit/permissions-access-level.txt

2019-09-11

Added

	Added modified unit tests in test_write_policy.py

	Created a policy.py file to contain ArnActionGroup

Changed

	Moved Minimization functions over to their own file

	Instead of ArnActionCollection, now using ArnActionGroup name

	Moved functionality from the write_policy file to the relevant files in the shared folder.

	Fixed risky-iam.txt file name

2019-09-08

Changed

	Modified the write_policy_with_actions function so it uses the write_policy with crud stuff. We can now delete a lot of the functions that we don’t use anymore.

	Removed all the code that is now unused

2019-09-04

Changed

	lots of code reviews and doc strings

2019-09-03

Added

	pipfile and lockfile

	Feature to scrape docs locally: grab_docs.sh, utils/download-docs.sh, utils/get_links.py

	pylintrc file

	disabled line-too-long in pylint

	editorconfig file

	bandit as a dependency

Changed

	update readme links to short version

	Feature to scrape docs locally: grab_docs.sh, utils/download-docs.sh, utils/get_links.py

2019-09-02

	Added Unit tests. Fixes #20

2019-09-01

	Feature: CRUD Functionality supports user-supplied input now (fixes GH-05)

	Database file now checked into git

	We now assume that you are using the same database file

	Just need to trim the write_policy file and combine functions

	Trimmed the command flags to make thing simpler

	Updated documentation to reflect reduced command flags.

2019-08-30 (pt 2)

	Added Condition keys table

	Actions Table now separates the Condition Keys by commas instead of double spaces

2019-08-30

	Version bump (0.1.0)

	Fixed class structure

	Moved command-specific documentation to the _docs folder for cleanliness

2019-08-26

	Added create_all_tables command

	Updated functions to include all services (it wasn’t grabbing all services before).

	Added Note in README about the 3 services missing from the Actions, Resources, and Condition Keys page

	Added analyze_iam_policy command with test files

	Gives a warning when your action matches fishy IAM actions

	Split connect_db and create_tables out into different functions

	Permits using existing database.

	Added expand functionality.

	Added flag to analyze_iam_policy to allow custom audit file

	Fixed issue #3 for ecr and codecommit overlap

	Added minimize functionality

2019-08-23

	Removed check_access and moved it to a separate repository.

	Fixed imports

2019-08-05

	retired check_permissions_usage (Access Advisor check), since CloudMapper generates a great report using that.

	Write_policy now uses SQLite instead of funky objects

	CRUD Functionality now supported

Salesforce Open Source Community Code of Conduct

About the Code of Conduct

Equality is a core value at Salesforce. We believe a diverse and inclusive
community fosters innovation and creativity, and are committed to building a
culture where everyone feels included.

Salesforce open-source projects are committed to providing a friendly, safe, and
welcoming environment for all, regardless of gender identity and expression,
sexual orientation, disability, physical appearance, body size, ethnicity, nationality,
race, age, religion, level of experience, education, socioeconomic status, or
other similar personal characteristics.

The goal of this code of conduct is to specify a baseline standard of behavior so
that people with different social values and communication styles can work
together effectively, productively, and respectfully in our open source community.
It also establishes a mechanism for reporting issues and resolving conflicts.

All questions and reports of abusive, harassing, or otherwise unacceptable behavior
in a Salesforce open-source project may be reported by contacting the Salesforce
Open Source Conduct Committee at ossconduct@salesforce.com.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of gender
identity and expression, sexual orientation, disability, physical appearance,
body size, ethnicity, nationality, race, age, religion, level of experience, education,
socioeconomic status, or other similar personal characteristics.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy toward other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Personal attacks, insulting/derogatory comments, or trolling

	Public or private harassment

	Publishing, or threatening to publish, others’ private information—such as
a physical or electronic address—without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

	Advocating for or encouraging any of the above behaviors

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned with this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project email
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the Salesforce Open Source Conduct Committee
at ossconduct@salesforce.com. All complaints will be reviewed and investigated
and will result in a response that is deemed necessary and appropriate to the
circumstances. The committee is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement
policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership and the Salesforce Open Source Conduct
Committee.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html.
It includes adaptions and additions from Go Community Code of Conduct [https://golang.org/conduct],
CNCF Code of Conduct [https://github.com/cncf/foundation/blob/master/code-of-conduct], and Microsoft Open Source Code of Conduct [https://opensource.microsoft.com/codeofconduct/].

This Code of Conduct is licensed under the Creative Commons Attribution 3.0 License [https://creativecommons.org/licenses/by/3.0/us/].

policy_sentry

IAM Least Privilege Policy Generator, auditor, and analysis database.

Wiki

For walkthroughs and full documentation, please visit the wiki [https://github.com/salesforce/policy_sentry/wiki].

Overview

Writing security-conscious IAM Policies by hand can be very tedious and inefficient. Many Infrastructure as Code developers have experienced something like this:

	Determined to make your best effort to give users and roles the least amount of privilege you need to perform your duties, you spend way too much time combing through the AWS IAM Documentation on Actions, Resources, and Condition Keys for AWS Services [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html].

	Your team lead encourages you to build security into your IAM Policies for product quality, but eventually you get frustrated due to project deadlines.

	You don’t have an embedded security person on your team who can write those IAM policies for you, and there’s no automated tool that will automagically sense the AWS API calls that you perform and then write them for you in a least-privilege manner.

	After fantasizing about that level of automation, you realize that writing least privilege IAM Policies, seemingly out of charity, will jeopardize your ability to finish your code in time to meet project deadlines.

	You use Managed Policies (because hey, why not) or you eyeball the names of the API calls and use wildcards instead so you can move on with your life.

Such a process is not ideal for security or for Infrastructure as Code developers. We need to make it easier to write IAM Policies securely and abstract the complexity of writing least-privilege IAM policies. That’s why I made this tool.

Authoring Secure IAM Policies

policy_sentry’s flagship feature is that it can create IAM policies based on resource ARNs and access levels. Our CRUD functionality takes the opinionated approach that IAC developers shouldn’t have to understand the complexities of AWS IAM - we should abstract the complexity for them. In fact, developers should just be able to say…

	“I need Read/Write/List access to arn:aws:s3:::example-org-sbx-vmimport”

	“I need Permissions Management access to arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret”

	“I need Tagging access to arn:aws:ssm:us-east-1:123456789012:parameter/test”

…and our automation should create policies that correspond to those access levels.

How do we accomplish this? Well, policy_sentry leverages the AWS documentation on Actions, Resources, and Condition Keys documentation to look up the actions, access levels, and resource types, and generates policies according to the ARNs and access levels. Consider the table snippet below:

 	Actions
 	Access Level
 	Resource Types

 	ssm:GetParameter
 	Read
 	parameter

 	ssm:DescribeParameters
 	List
 	parameter

 	ssm:PutParameter
 	Write
 	parameter

 	secretsmanager:PutResourcePolicy
 	Permissions management
 	secret

 	secretsmanager:TagResource
 	Tagging
 	secret

Policy Sentry aggregates all of that documentation into a single database and uses that database to generate policies according to actions, resources, and access levels. To generate a policy according to resources and access levels, start by creating a template with this command so you can just fill out the ARNs:

policy_sentry create-template --name myRole --output-file crud.yml --template-type crud

It will generate a file like this:

roles_with_crud_levels:
- name: myRole
 description: '' # Insert description
 arn: '' # Insert the ARN of the role that will use this
 read:
 - '' # Insert ARNs for Read access
 write:
 - '' # Insert ARNs...
 list:
 - '' # Insert ARNs...
 tag:
 - '' # Insert ARNs...
 permissions-management:
 - '' # Insert ARNs...

Then just fill it out:

roles_with_crud_levels:
- name: myRole
 description: 'Justification for privileges'
 arn: 'arn:aws:iam::123456789102:role/myRole'
 read:
 - 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
 write:
 - 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
 list:
 - 'arn:aws:ssm:us-east-1:123456789012:parameter/myparameter'
 tag:
 - 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'
 permissions-management:
 - 'arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret'

Then run this command:

policy_sentry write-policy --crud --input-file crud.yml

It will generate these results:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SsmReadParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:getparameter",
 "ssm:getparameterhistory",
 "ssm:getparameters",
 "ssm:getparametersbypath",
 "ssm:listtagsforresource"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 },
 {
 "Sid": "SsmWriteParameter",
 "Effect": "Allow",
 "Action": [
 "ssm:deleteparameter",
 "ssm:deleteparameters",
 "ssm:putparameter",
 "ssm:labelparameterversion"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:123456789012:parameter/myparameter"
]
 },
 {
 "Sid": "SecretsmanagerPermissionsmanagementSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:deleteresourcepolicy",
 "secretsmanager:putresourcepolicy"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 },
 {
 "Sid": "SecretsmanagerTaggingSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:tagresource",
 "secretsmanager:untagresource"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:123456789012:secret:mysecret"
]
 }
]
}

Notice how the policy above recognizes the ARNs that the user supplies, along with the requested access level. For instance, the SID “SecretsmanagerTaggingSecret” contains Tagging actions that are assigned to the secret resource type only.

This rapidly speeds up the time to develop IAM policies, and ensures that all policies created limit access to exactly what your role needs access to. This way, developers only have to determine the resources that they need to access, and we abstract the complexity of IAM policies away from their development processes.

Quickstart

	policy_sentry is available via pip. To install, run:

pip install --user policy_sentry

	Policy Writing cheat sheet

Initialize the policy_sentry config folder and create the IAM database tables.
policy_sentry initialize

Create a template file for use in the write-policy command (crud mode)
policy_sentry create-template --name myRole --output-file tmp.yml --template-type crud

Write policy based on resource-specific access levels
policy_sentry write-policy --crud --file examples/crud.yml

Write policy_sentry YML files based on resource-specific access levels on a directory basis
policy_sentry write-policy-dir --crud --input-dir examples/input-dir --output-dir examples/output-dir

Create a template file for use in the write-policy command (actions mode)
policy_sentry create-template --name myRole --output-file tmp.yml --template-type actions

Write policy based on a list of actions
policy_sentry write-policy --file examples/actions.yml

	Policy Analysis Cheat Sheet

Initialize the policy_sentry config folder and create the IAM database tables.
policy_sentry initialize

Analyze a policy FILE to determine actions with "Permissions Management" access levels
policy_sentry analyze-iam-policy --from-access-level permissions-management --file examples/analyze/wildcards.json

Download customer managed IAM policies from a live account under 'default' profile. By default, it looks for policies that are 1. in use and 2. customer managed
policy_sentry download-policies # this will download to ~/.policy_sentry/accountid/customer-managed/.json

Download customer-managed IAM policies, including those that are not attached
policy_sentry download-policies --include-unattached # this will download to ~/.policy_sentry/accountid/customer-managed/.json

Analyze a DIRECTORY of policy files
policy_sentry analyze-iam-policy --show ~/.policy_sentry/123456789012/customer-managed

Analyze a policy FILE to identify higher-risk IAM calls
policy_sentry analyze-iam-policy --file examples/analyze/wildcards.json

Analyze a policy against a custom file containing a list of IAM actions
policy_sentry analyze-iam-policy --file examples/analyze/wildcards.json --from-audit-file ~/.policy_sentry/audit/privilege-escalation.txt

Commands

Usage

	initialize: Create a SQLite database that contains all of the services available through the Actions, Resources, and Condition Keys documentation [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]. See the documentation [https://github.com/salesforce/policy_sentry/wiki/Initializing-policy_sentry].

	create-template: Creates the YML file templates for use in the write-policy command types.

	write-policy: Leverage a YAML file to write policies for you

	Option 1: Specify CRUD levels (Read, Write, List, Tagging, or Permissions management) and the ARN of the resource. It will write this for you. See the documentation [https://github.com/salesforce/policy_sentry/wiki/Writing-IAM-Policies-with-Resource-ARNs-and-Access-Levels]

	Option 2: Specify a list of actions. It will write the IAM Policy for you, but you will have to fill in the ARNs. See the documentation [https://github.com/salesforce/policy_sentry/wiki/Writing-IAM-Policies-with-a-List-of-Actions].

	write-policy-dir: This can be helpful in the Terraform use case. For more information, see the wiki.

	download-policies: Download IAM policies from your AWS account for analysis.

	analyze-iam-policy: Analyze an IAM policy read from a JSON file, expands the wildcards (like s3:List* if necessary.

	Option 1: Audits them to see if certain IAM actions are permitted, based on actions in a separate text file. See the documentation [https://github.com/salesforce/policy_sentry/wiki/Initializing-policy_sentry].

	Option 2: Audits them to see if any of the actions in the policy meet a certain access level, such as “Permissions management.”

Updating the AWS HTML files

Run the following:

./utils/grab-docs.sh
Or:
./utils/download-docs.sh

References

	The document scraping process was inspired and borrowed from a similar ansible hacking script [https://github.com/ansible/ansible/blob/devel/hacking/aws_config/build_iam_policy_framework.py].

	Identity-Based vs Resource-based policies [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html]

	Actions, Resources, and Condition Keys for AWS Services [https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html]

Roadmap

Open Source:

	Publish this on GitHub public (after internal approval) and then publish on public pip.

Enhancement:

	Move the download-docs.sh functionality into a subset of the initialize command.

Potential major add-ons:

	Support Global Condition Keys via a config file?

policy_sentry-terraform-example

Example of using policy_sentry [https://github.com/salesforce/policy_sentry] with Terraform to generate secure policies automagically.

Prerequisites

This requires:

	Terraform v0.12.8

	AWS credentials; must be authenticated

Demo

	Install policy_sentry

pip3 install policy_sentry

	Initialize policy_sentry

policy_sentry initialize

	Execute the first Terraform module:

cd environments/standard-resources
tfjson install 0.12.8
terraform init
terraform plan
terraform apply -auto-approve

This will create a YML file to be used by policy_sentry in the environments/iam-resources/files/ directory titled example-role-randomid.yml.

	Write the policy using policy_sentry:

cd ../iam-resources
policy_sentry write-policy-dir --crud --input-dir files --output-dir files

This will create a JSON file to be consumed by Terraform’s aws_iam_policy resource to create an IAM policy.

	Now create the policies with Terraform:

terraform init
terraform plan
terraform apply -auto-approve

	Don’t forget to cleanup

terraform destroy -auto-approve
cd ../standard-resources
terraform destroy -auto-approve

Using the Terraform modules in your code

Step 1: Install policy_sentry

	Install policy_sentry

pip3 install -r requirements.txt

	Initialize policy_sentry

policy_sentry initialize

Step 2: Generate the policy_sentry YAML File

Create a file with the following in some-directory:

module "policy_sentry_yml" {
 source = "git::https://github.com/salesforce/policy_sentry.git//examples/modules/generate-policy_sentry-yml"
 role_name = ""
 role_description = ""
 role_arn = ""

 list_access_level = []
 permissions_management_access_level = []
 read_access_level = []
 tagging_access_level = []
 write_access_level = []

 yml_file_destination_path = "../other-directory/files"
}

Make sure you fill out the actual directory path properly. Note that yml_file_destination_path should point to the directory mentioned in Step 3.

Step 3: Run policy_sentry and specify proper target directory

	Enter the directory you specified under yml_file_destination_path above.

	Run the following:

policy_sentry write-policy-dir --crud --input-dir files --output-dir files

Step 4: Create the IAM Policies using JSON files from directory

Then from other-directory:

module "policies" {
 source = "git::https://github.com/salesforce/policy_sentry.git//examples/terraform/modules/generate-iam-policies"
 relative_path_to_json_policy_files = "files"
}

generate-iam-policies

This generates IAM policies based on JSON files in a specified folder. This is ideal for usage with policy_sentry-generated IAM Policies.

Usage

From the environments/iam-resources/ directory, which shows the example usage of this.

module "policies" {
 source = "../../modules/generate-iam-policies"
 relative_path_to_json_policy_files = "files"
}

Inputs

Name	Description	Type	Default	Required
——	————-	:—-:	:—–:	:—–:
relative_path_to_json_policy_files	Path to the folder containing your policy_sentry-generated JSON policy files.	string	n/a	yes

Outputs

Name	Description
——	————-
file_names	The .json files loaded
iam_policy_arn	The ARN assigned by AWS to this policy.
iam_policy_id	The policy’s ID.
iam_policy_name	The name of the policy.
iam_policy_path	The path of the policy in IAM
iam_policy_policy	The policy document.

generate-policy_sentry-yml

Generates

Inputs

Name	Description	Type	Default	Required
——	————-	:—-:	:—–:	:—–:
list_access_level	Provide a list of Amazon Resource Names (ARNs) that your role needs LIST access to.	list	n/a	yes
permissions_management_access_level	Provide a list of Amazon Resource Names (ARNs) that your role needs PERMISSIONS MANAGEMENT access to.	list	n/a	yes
read_access_level	Provide a list of Amazon Resource Names (ARNs) that your role needs READ access to.	list	n/a	yes
role_arn	The ARN of your role.	string	n/a	yes
role_description	Description of why you need these privileges.	string	n/a	yes
role_name	Name of the Role that will have this policy attached.	string	n/a	yes
tagging_access_level	Provide a list of Amazon Resource Names (ARNs) that your role needs TAGGING access to.	list	n/a	yes
write_access_level	Provide a list of Amazon Resource Names (ARNs) that your role needs WRITE access to.	list	n/a	yes
yml_file_destination_folder	The path where your policy_sentry YML file will be stored.	string	n/a	yes

Outputs

Name	Description
——	————-
file_name	The path of the file.

Audit files

	Resource exposure access level: These are IAM actions that meet one of the following criteria:

	Actions classified at “Permissions management” access level

	Actions under “IAM” service at the “Write” access level

	(We should add RAM service at the “Write” access level to this)

	Privilege escalation:

	Based on Rhino Security Labs research here [https://github.com/RhinoSecurityLabs/Cloud-Security-Research/blob/master/AWS/aws_escalate/aws_escalate.py#L247]

Roadmap

In the future, we will add these as well:

	Network exposure (Public IPs, security groups)

	Data access (as opposed to config access).

	We can identify these policies based on the actions that are associated with different ARN types. For instance, S3 bucket object ARN permits data access, whereas S3 bucket ARN or S3 job ARN permits config access

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

